Рефераты по Физике

Кристаллы в природе

Страница 21

В случае твёрдых тел результаты этого сложения зависят т взаимодействия частиц в твёрдом теле. Разные вещества обладают различными магнитными свойствами.

6.3 Классификация тел по магнитным свойствам

Cамое простое деление тел по магнитным свойствам сводится к выделению слабомагнитных и сильномагнитных тел. известно также деление веществ по магнитным свойствам на диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики и ферримагнетики.

Впервые деление веществ по магнитным свойствам предложил уже более ста лет назад М.Фарадей. Он помещал образцы различных веществ в неоднородное магнитное поле и обнаружил, что часть из них втягивается из области с малой индукцией в область большей индукции и устанавливается вдоль линии индукции поля, а часть выталкивается из области магнитного поля с большим значением индукции, устанавливаясь поперёк линии индукции. первую группу он назвал парамагнетикой(вдоль), вторую- диамагнетикой(поперёк).

Среди парамагнетиков бала обнаружена группа веществ, обладающая особо сильными свойствами, как бы сверхпарамагнетики. К ним в первую очередь относятся железо, никель и кобальт. впоследствии их выделили в особый класс ферромагнитных веществ.

Все эти вещества характеризуются различной магнитной проницаемостью μ: для диамагнетиков μ<1, для парамагнетиков μ>1, но и в том и в другом случае μ лишь незначительно отличаются от единицы. для ферромагнетиков μ>>1. Но не только в этом отличие ферромагнитных свойств.

Магнитная проницаемость ферромагнетиков μ не является постоянной величиной, а зависит от индукции внешнего поля В0. Характер данной зависимости приведён на рисунке 45в.

рис.45в

Ферромагнетики обладают остаточным магнетизмом, т.е. могут сохранять намагниченность и при отсутствии внешнего намагничивающего поля.

Для ферромагнетиков характерен магнитный гистерезис - явление, возникающее при перемагничивании ферромагнитного образца. Сущность магнитного гистерезиса состоит в том, что изменение намагничивание образца I отстаёт от изменений индукции магнитного поля В0. При этом I=В-В0=(μ-1)В0. при некоторой температуре, называемой точкой Кюри, ферромагнетик теряет ферромагнитные свойства и превращается в обычный парамагнетик.

6.4. Диамагнетизм. Влияние магнитного поля на орбитальное движение электронов

Атомы диамагнитных веществ, при отсутствии внешнего намагничивающего поля не имеют магнитного момента. Орбитальные и спиновые моменты всех электронов этих атомов скомпенсированы. Если же диамагнитное тело поместить в магнитное поле, то в нём возникнет дополнительный магнитный момент, направленный против поля. Как это объяснить?

Объяснение основано на применении к атому, помещённому в магнитное поле, правило Ленца. В момент включения магнитного поля или внесении диамагнитного вещества в область, где поле уже есть, в атомах должны возникнуть индукционные токи. В действительности в атоме движутся электроны, а магнитное поле как-то изменяет движение этих электронов и эквивалентный этому движению электронов ток. Но для простоты объяснения будем говорить об индукционном токе. Согласно правилу Ленца направление индукционного тока таково, что поле, им созданное, направлено против намагничивание поля В0. Возникший дополнительный орбитальный магнитный момент электрона направлен против поля. Данный эффект продолжается и после исчезновения э.д.с. индукции, когда магнитное поле не меняется. Объясняется это отсутствием сопротивления движению электронов в атоме, вследствие чего индукционный ток в нём не затухнет и после исчезновения э.д.с.

Если орбитальные магнитные моменты разных электронов в атоме могут скомпенсировать друг друга, то дополнительные магнитные моменты электронов, направленные у всех электронов против поля, суммируются, т.е. возникает суммарный дополнительный магнитный момент атома.

Возникновения диамагнетизма можно объяснить ещё и изменением частоты обращения электрона вокруг ядра.

Рассмотрим случай, когда плоскость орбиты электрона перпендикулярна к вектору В0 магнитного поля (рис46). На электрон в этом случае, кроме кулоновской силы Fк, действует сила Лоренца Fл, равная evB0. Равнодействующая сила при этом равна либо сумме, либо разности Fк и Fл, поэтому и центростремительное ускорение в этих двух случаях различно. Оно или увеличится или уменьшится, соответственно изменяется и частота обращения электрона вокруг ядра. Это изменение частоты и обусловливает появления дополнительного магнитного момента, так как изменяется сила эквивалентного тока.

рис. 46

Во всех же других случаях происходит так называемая прецессия электронной орбиты в магнитном поле.

Диамагнитный эффект присущ всем атомам без исключения, но по величине он незначителен. Обнаружить диамагнитный момент удаётся лишь в том случае, когда он не подавляется более сильным парамагнитным эффектом.

Диамагнетиками являются все инертные газы, а также металлы (медь, серебро, золото, бериллий, цинк, кадмий, бор, галлий, свинец, сурьма, висмут и др.).

6.5. Парамагнетизм

У парамагнетиков атомы и молекулы имеют постоянный магнитный момент, т.е. магнитные моменты частиц, их составляющих, не скомпенсированы. Такие атомы и молекулы в магнитном поле ведут себя как магнитная стрелка, устанавливаясь по полю.

При рассмотрении поведения парамагнитных веществ в магнитном поле надо учитывать, что магнитное поле ориентирует магнитные моменты атомов, а тепловое движение, наоборот, оказывает дезориентирующее действие. В результате действия обоих факторов устанавливается некоторое распределение магнитных моментов тела.

На рисунке 48 показаны магнитные моменты атомов парамагнетика при отсутствии внешнего магнитного поля.

рис. 48 рис. 49

Магнитные моменты отдельных атомов ориентированы равновероятно и по всем направлениям и средний магнитный момент всего тела равен нулю.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29