Рефераты по Физике

Кристаллы в природе

Страница 18

При контакте двух полупроводников n-типа вследствие теплового движения диффундируют в полупроводник р-типа. Встреча электрона с дыркой приводит к уничтожению дырки, т.е. при встрече электроны рекомбинируют с дырками. В результате этого атомы примеси становятся отрицательными ионами. В тонком слое полупроводника р-типа вблизи контакта образуется избыточный отрицательный заряд. Дырки из полупроводника р-типа также вследствие теплового движения диффундируют в полупроводник n-типа, частично рекомбинируют с электронами, в результате чего в тонком слое полупроводника n-типа создаётся избыточный положительный заряд.

Возникший в месте контакта двойной электрический слой создаёт электрическое поле напряжённостью Евн, которое препятствует движению основных носителей заряда из одного полупроводника в другой. Поскольку в контактном слое мало носителей тока, он обладает повышенным электрическим сопротивлением и препятствует прохождению электрического тока через контакт полупроводников. По этой причине двойной контактный слой называют ещё запирающим. Контакт двух полупроводников разных типов называют также р-n-переходом.

5.9 Термоэлектрические явления

К сожалению, контакт двух металлов с его разностью потенциалов ∆φ нельзя использовать как источник электрической энергии не потому, что ∆φ мало, а потому, что в замкнутой цепи, составленной из различных металлов, находящихся при одинаковой температуре, сумма всех контактных разностей потенциалов равна нулю.

Сформулированный выше вывод справедлив лишь при условии, что температуры контактирующих металлов одинаковы.

Но если в замкнутом контуре, составленном из двух металлических проводников, контакты имеют различные температуры, то сумма контактных разностей потенциалов будет отлична от нуля. Это означает, что в контуре будет действовать электродвижущая сила, которую называют термоэлектродвижущей, а в замкнутом контуре установится электрический ток, называемый термоэлектрическим.

Термоэлектродвижущая сила ε пропорциональна разности температур контактов: ε =α(Т1-Т2).

Явление термоэлектричества было открыто около 150 лет назад голландским физиком Зеебеком и давно используется в лабораторной технике для измерения температур. Принципиальная схема термоэлектрического термометра показана на рис (35).

рис.35

Металлы 1 и 2, составляющие термопару, подбирают так, чтобы чувствительность её была наибольшей. Один спай помещают в место, температуру которого нужно измерить, а температуру другого спая поддерживают постоянной. При не очень точных измерениях второй спай находится просто в воздухе. При точных измерениях его погружают в сосуд Дьюара, заполненный, например, жидким азотом или тающим льдом. К клеммам аб подключают чувствительный гальванометр. Термопары позволяют измерять как очень высокие, так и очень низкие температуры, которые невозможно измерить обычным жидкостным термометром.

Для увеличения чувствительности вместо одной термопары берут несколько термопар, соединенных последовательно. Э.д.с. полученной термобатареи равна сумме э.д.с. отдельных термопар. Термостолбики монтируют так, что все нечётные спаи находятся на поддерживающей рамке, а все чётные - в середине рамки. Рамка с термобатареей помещена внутрь закрытого металлического кожуха, имеющего небольшое оконце, через которое падающее на термостолбик излучение нагревает чётные спаи термобатареи. Если подсоединить такой термостолбик к проекционному гальванометру, то можно убедится, что он обнаруживает тепловое излучение человеческой руки, удалённой от него на расстоянии нескольких метров. Такое излучение вызывает разность температур спаев лишь около миллионной доли градуса.

Термоэлемент можно использовать для превращения тепла, нагревающего горячий спай, в электрическую энергию. Однако при этом значительная часть тепла отдаёт холодным спаем окружающей среде, теряет за счёт хорошей теплопроводности металлов, поэтому доля тепла, превращаемого в электрическую энергию, невелика. Величина же термоэлектродвижущей силы таких элементов незначительна, так как у металлов число свободных электронов и их энергия практически не зависят от температуры. К.п.д. таких термоэлементов не превышает 0,5% . Поэтому они непригодны в качестве генераторов электрической энергии.

Дальнейший шаг на пути создания термоэлементов с более высоким к.п.д. - создание термоэлемента из двух полупроводников. Идея создания полупроводниковых термоэлементов принадлежит советскому физику академику А.Ф.Иоффе.

Конструктивно полупроводниковый термоэлемент может быть оформлен так, как показано на рисунке 36

рис.36

верхние концы полупроводниковых брусочков 1 и 3 с разным типом проводимости замкнуты медной пластинкой 2. П-образные, стальные пластины радиатора 4 предназначены для отвода теплоты и поддержания необходимой разности температур при работе термоэлемента. Медная пластина 2, замыкающие горячие концы полупроводников, не оказывает влияния на величину термо-э.д.с. такого термоэлемента, так как оба конца её находятся при одной и той же температуре.

Величина термо-э.д.с. в полупроводниковых термоэлементах больше, чем у металлических термопар, не только за счёт меньшей теплопроводности полупроводников. Основная причина состоит в том, что в полупроводниках нагревание увеличивает не только кинетическую энергию электронов и дырок, но и их концентрацию.

В результате повышения концентрации основных носителей тока – электронов в полупроводнике n–типа (рис37) и дырок в полупроводнике р-типа(рис 38) и увеличение энергии их движения изменяется распределение зарядов в внутри полупроводника: основные носители тока «устремляются» к холодному концу, «обнажая» ионы примеси. Такое перераспределение зарядов влечёт за собой образования внутреннего электрического поля, которое по мере возрастания замедляет движение зарядов от горячего конца к холодному. В результате совместного действия этого поля и соответствующей разности температур устанавливает равновесие, характеризуемое определённой разностью потенциалов между нагретым и холодным концами полупроводника. Если включить такой полупроводник в цепь и замкнуть её, то в цепи появится ток.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29