Рефераты по Физике

Тунельные и барьерные эффекты

Страница 9

В самом деле, тогда парадокс полностью решается: частица, находящаяся внутри ядра, может иметь энергию, меньшую, нежели высота барьера, и все же пройти через него. Частица же, про­летающая извне, ввиду малой прозрачности барьера лишь в очень редких случаях будет захватываться ядром (так как время пре­бывания ее около ядра очень - мало). Поэтому рассеяние α - частиц, падающих извне, будет обусловливаться кулоновскими силами, действующими за пределами барьера. Предположенная малая прозрачность барьера, согласуется с тем фактом, что периоды радиоактивного α - распада весьма велики.

Применяя теорию прохождения через потенциальные барьеры, легко облечь изложенную идею в математическую форму и найти выражение для константы радиоактивного распада λ - эта константа определяется следующим образом. Если имею­щееся к моменту времени t число нераспавшихся атомов N, то dN будет равно

(5.1)

Для вычисления константы распада λ мы можем применить кван­товую теорию просачивания частиц через потенциальные барьеры, изложенную в предшествующем параграфе. Согласно этой теории α - частицу внутри ядра следует рассматривать как находящуюся в «квазистационарном» состоянии. Обозначая скорость частицы в этом состоянии через υi,-, радиус барьера через r0 и его коэффициент прозрачности через D, мы получим

(5.2)

Остается вычислить D. Ввиду более сложной формы барьера вместо (4.24) мы получим (см. (1.24))

(5.3)

Из рис. 5.1 следует, что первая точка поворота r'1 есть г0 (радиус ядра), вторая (г2) определится из условия

(5.4)

Таким образом,

(100.5)

Вводя сюда новую переменную % , мы получаем

(5.5')

и, полагая, наконец, ещеm ξ = cos2u, мы без труда вычислим по­рученный интеграл (5.5')

Воспользуемся тем, что отношение меньше, единицы, и {разложим Uо и sin2 Uо в ряд по степеням (достаточно огра­ничиться двумя первыми членами). Тогда мы получим .

(5.7)

где υ – скорость вдали от ядра, равная . Итак, выражение для константы распада (5.3) раскрывается слёдующим образом:

(5.8)

или

(5.9)

Наиболее замечательным выводом из этой формула является зави­симость между λ и скоростью λ - частицы v. Подобная зависимость еще задолго до квантовой теории этого явления была установлёна на опыте Гайгером и Нэттолом.

Далее мы видим, что 1nλ зависит от номера элемента Z (Z = Z'— 2) и радиуса ядра.

Из опыта известно, что константы распада варьируются в очень |широких пределах: от 106 сек-1 до 10-18 сек-1. Если бы в таких же пределах приходилось варьировать параметры, определяющие λ, то теория была бы наверно неправильной. Замечательным следствием формулы (5.9) является то, что если по эмпирическим данным для λ определять радиусы ядер, то окажется, что они все лежат в тесных границах, примерно от 5 · 10 -12 см до 9 · 10-12 см. Значительное различие в величине λ для разных элементов определяется не различием в радиусах ядер, а различием в энергии вылетающих частиц. Слабую зависимость λ от r0 и резкую от v следует рассматривать как подтверждение теории.

§ 6. Ионизация атомов в сильных электрических полях

Подобно тому, как сильное электрическое поле вырывает электроны из металлов оно вырывает их также и из отдельных атомов газа. Явление это называют иногда «автоионизацией» атомов и его причину легко понять, если рассмотреть вид потенциальной энергии элек­трона, в атоме при наличии внеш­него электрического поля. Пусть, потенциальная энергия электрона в отсутствие внешнего поля есть U (r). Внешнее электрическое по­ле ξ пусть направлено по оси OZ. Тогда вся потенциальная энергия электрона равна

(6.1) .

Рис. 6.1. Сложение атомного и внешнего поля.

Рассмотрим вид потенциальной кривой на оси OZ(x = y = 0, r = | z |). В отсутствие внешнего поля (ξ = 0) U' = U (r) и имеет вид, изображенный на рис. 6.1 пунктиром. Дополнительная потен­циальная энергия во внешнем поле еξz изобразится пунктирной прямой аа'. Кривая полной потенциальной энергии U, получаю­щаяся сложением, проведена на рис. 6.1 сплошной линией а'b' и ab. Мы видим, что около точки z0 образуется потенциальный барьер, разделяющий пространство на две области: внутреннюю z > z0 и внешнюю z < z0, в каждой из которых потенциальная энергия U' меньше U' (z0) = Um. На рис. 6.1 приведены также два уровня энергии Е` и Е". Если энергия Е = Е" > Um, то элект­рон не будет удерживаться вблизи атома, а будет удаляться в область отрицательных z. Если же энергия электрона Е = Е' < Um, то, согласно законам классической механики, элект­рон останется во внутренней области. По квантовой механике в этом случае просачивание через барьер все же будет иметь, место. Таким образом, здесь создается положение вещей, вполне анало­гичное тому, которое имеет место при радиоактивном распаде.

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11