Хаос необратимость времени и брюссельская
Теория КАМ рассматривает влияние резонансов на траектории. Простой случай гармонического осциллятора с постоянной частотой, не зависящей от переменных действия J, является исключением: частоты, вообще говоря, зависят от значений, принимаемых переменными действия. А посему в одних точках фазового пространства динамической системы резонанс может существовать, а в других – нет. Резонансы соответствуют рациональным соотношениям между частотами, классический же результат теории чисел говорит, что мера рациональных чисел по сравнению с мерой иррациональных равна нулю. Это означает, что резонансы встречаются крайне редко. Кроме того, в отсутствие возмущений, как было сказано выше, резонансы приводят к периодическому движению, а в общем случае мы имеем квазипериодическое движение (нерезонансные торы) . Резюмируя, можно сказать, что периодические движения – не правило, а исключение.
(Интересно было бы предположить, какими путями развивалась бы эволюция жизни на Земле, если бы движение Земли вокруг Солнца не носило периодического характера. Возможна ли, например, жизнь в условиях планетной системы двойной звезды? Автор реферата полагает, что если "крайние" условия, в которые попадала бы такая планета, не были слишком уж жёсткими, то жизнь нашла бы возможность приспособиться и эволюция была бы всё-таки возможна. Однако все эти рассуждения основаны лишь на оптимизме автора и его вере в глубокую приспособляемость всего живого к внешним условиям, и имеют крайне мало отношения к объявленной в заглавии теме работы) .
При введении возмущений характер движения на резонансных торах резко изменяется (по теореме Пуанкаре) , в то время как квазипериодическое движение изменяется незначительно, по крайней мере, при малом параметре возмущения l. Основной результат теории КАМ состоит в том, что теперь мы имеем два совершенно различных типа траекторий: слегка изменившиеся квазипериодические траектории и стохастические траектории, возникшие при разрушении резонансных торов. Появление стохастических траекторий подтверждается численными экспериментами [1, c. 127].
Теория КАМ не приводит к динамической теории хаоса. Её главный вклад в другом: она показала, что при малых значениях параметра l мы имеем промежуточный режим, в котором сосуществуют траектории двух типов – регулярные и стохастические. В дальнейшем нас будет в основном интересовать то, что происходит в предельном случае, когда снова останется только один тип траекторий. Эта ситуация соответствует так называемым большим системам Пуанкаре (БСП) , к рассмотрению которых мы и переходим.
При рассмотрении предложенной Пуанкаре классификации динамических систем на интегрируемые и неинтегрируемы мы отметили, что резонансы встречаются редко. При переходе к БСП ситуация радикально изменяется: в БСП резонансы играют главную роль.
Рассмотрим в качестве примера взаимодействие между какой-нибудь частицей и полем. Поле можно рассматривать как суперпозицию осцилляторов с континуумом частот. В отличие от поля, частица совершает колебания с одной фиксированной частотой w 1. Перед нами – пример неинтегрируемой системы Пуанкаре. Резонансы будут возникать всякий раз, когда w 1=w k. Испускание излучения обусловлено именно такими резонансными взаимодействиями между заряженной частицей и полем. Испускание излучения представляет собой необратимый процесс, связанный с резонансами Пуанкаре.
Новая особенность состоит в том, что частота w k есть непрерывная функция индекса k, соответствующая длинам волн осциллятора поля. Такова специфическая особенность больших систем Пуанкаре, то есть хаотических систем, у которых нет регулярных траекторий, сосуществующих с хаотическими траекториями. БСП соответствуют в действительности большинству физических ситуаций, с которыми мы сталкиваемся в природе. Но БСП позволяют также исключить расходимости Пуанкаре, то есть устранить основное препятствие на пути к интегрированию уравнений движения. Этот результат, заметно приумножающий мощь динамического описания, разрушает отождествление ньютоновской или гамильтоновой механики и обратимого по времени детерминизма в духе Лапласа. Уравнения для больших систем Пуанкаре в общем случае приводят к принципиально вероятностной эволюции с нарушенной симметрией во времени. Более подробно вопросы необратимости времени рассмотрим в следующем разделе.
1.3 Статистическое описание. Диссипативный хаос
Можно описывать мир в терминах траекторий (в классической физике) или волновых функций (в квантовой механике) . Почти сто лет назад Гиббс и Эйнштейн ввели ещё один тип описания – статистическое описание в терминах ансамблей. Описание отдельной динамической системы заменяется описанием ансамбля систем, которые все соответствуют одному и тому же гамильтониану и различаются только начальными условиями эволюции. Для введения ансамблевой точки зрения были две основные причины. Во-первых, описание в терминах ансамбля позволило удобно вычислять средние значения. Во-вторых, понятие ансамбля стало необходимым для описания системы, достигшей термодинамического равновесия. Оказалось, что термодинамические свойства можно понять только в терминах ансамблей, но отнюдь не в терминах отдельных траекторий или волновых функций. Ансамблевый подход применим ко всем динамическим системам, интегрируемым и неинтегрируемым, устойчивым и неустойчивым.
Основной величиной в ансамблевом подходе становится распределение вероятностей. Однако ничто не мешает вернуться как к предельному случаю. Подход Гиббса–Эйнштейна – альтернативный, но эквивалентный способ представления законов физики, он является сводимым статистическим описанием.
Концепцию несводимых статистических описаний, развиваемую школой И. Пригожина, мы подробнее рассмотрим в третьем разделе. Пока что вкратце обратимся к классическому диссипативному хаосу, для которого статистическое описание является единственно возможным подходом. Введём также некоторые понятия, необходимые для дальнейших рассуждений о статистическом описании. (Подробнее – см. [4]) .
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12