Хаос необратимость времени и брюссельская
следовательно, мы имеем собственную функцию оператора U+, которая принадлежит к классу обобщённых функций и имеет такое же собственное значение, какое первый многочлен Бернулли имеет для оператора U. Обозначим поэтому найденную функцию B(1) (x) .
Существует целое семейство обобщенных функций B(n) (x) , которые являются собственными функциями оператора U+ и соответствуют собственным значениям 1/2n. Эти функции не имеют конечной нормы, что вынуждает к переходу в обобщённое пространство. Их семейство, однако, обладает свойствами ортогональности и полноты.
Таким образом, как и в квантовой механике, мы можем разложить вероятность r (x) по биортонормированному семейству функций: .
Распространяя скалярное произведение на обобщённые функции, необходимо сделать некоторые существенные замечания. Основное свойство d -функции состоит в том, что при интегрировании с обычной непрерывной функции она "вырезает" её значение в точке x=x0. Для корректности скалярного произведения <f|g>, где f – обобщённая функция, необходимо, чтобы g была подходящей функцией, обеспечивающей сходимость скалярного произведения. Она, очевидно, не должна принимать бесконечных значений – во всяком случае, в точке x=x0. Назовём такие функции пробными.
Мы можем определить действие оператора A на обобщённую функцию f с помощью соотношения <Af|g>=<f|A+g> – но такое соотношение вполне определено только при том условии, что A+g остаётся пробной функцией. Задача на собственные значения A|f> = l |f> также имеет смысл только в том случае, если пользоваться пробными функциями g такими, что <g|Af> = l <g|f>.
Возвращаясь к спектральному представлению эволюции при сдвиге Бернулли, делаем вывод: так как B(n) – обобщённые функции, r (x) должна быть пробной функцией, так как в противном случае ей бы соответствовала d -функция, для которой скалярное произведение с B(n) расходится.
Спектральные теории Пригожина применимы только для ансамблей траекторий – это фундаментальный результат. Для хаотических систем, а сдвиг Бернулли – простейший из примеров таких систем, вероятностное описание следует строить не в гильбертовом, а в обобщённом пространстве, и оно несводимо. В этом – принципиальное отличие брюссельского подхода от подхода на основе теории ансамблей Гиббса–Эйнштейна: их описание было сводимо, поскольку могло быть разложено на описания отдельных траекторий.
Мы подходим к важному вопросу: что означает действие оператора эволюции U(t) на обобщённую функцию? Это соотношение имеет вполне определённый смысл, если U+(t) g остаётся пробной функцией. Для хаотических систем это условие, как правило, не выполняется и при t>0, и при t<0. Пробные функции для прошлого отличаются от пробных функций для будущего. Этот факт приводит к нарушению симметрии во времени и лежит в основе решения парадокса времени, предлагаемого брюссельской школой.
Рассмотренное выше отображение пекаря также допускает спектральное представление в гильбертовом пространстве, однако собственные значения его оператора Перрона–Фробениуса не имеют при этом отношения к времени Ляпунова – таким образом, хаотические свойства остаются "за кадром". Оказывается всё-таки, что некоторые хаотические системы – и преобразование пекаря в частности – допускают дополнительные спектральные представления. Помимо спектрального представления оператора эволюции в гильбертовом пространстве можно построить новое представление в обобщённом гильбертовом пространстве, которое связывает эволюцию во времени с временем Ляпунова.
Может возникнуть вопрос – так какое же представление правильное? С математической точки зрения они оба вполне корректны. Однако комплексные представления в обобщённом пространстве позволяют продвинуться значительно дальше, так как включают в спектр оператора эволюции время Ляпунова, которое характеризует временной горизонт хаотических систем. Новые представления позволяют описывать приближение к равновесию, явно описывают нарушение симметрии во времени и включают необратимость на фундаментальном уровне описания.
Весьма важно, что новые представления несводимы. Неоднократно утверждалось, что хаос, связанный с чувствительностью к начальным условиям, приводит к "невычислимым" траекториям. Казалось, что это чисто техническая трудность. Как теперь понятно, причина гораздо более глубокая. Существует своего рода соотношение дополнительности в боровском смысле между необратимостью на уровне статистических ансамблей, с одной стороны, и траекторий – с другой.
На простейших хаотических примерах мы проиллюстрировали, как в концепции Пригожина возникает необходимость несводимого описания и как в этом несводимом описании проявляется стрела времени. Обратимся теперь к выводам, которые аналогичный подход даёт в квантовой теории (объём настоящей работы не позволяет подробно описать математические особенности применения этого подхода) . Приведём только один пример.
В операторе эволюции U(t) =e–iHt будущее и прошлое играют одну и ту же роль, так как независимо от того, какие знаки имеют t1 и t2 выполняется свойство U(t1+t2) = U(t1) + U(t2) . Принято говорить, что оператор эволюции U(t) образует динамическую группу. Пробные функции же принадлежат двум различным классам в зависимости от того, какую эволюцию – прямую (в будущее) или обратную (в прошлое) – мы рассматриваем. Это означает, что динамическая группа, порождаемая оператором эволюции U(t) , распадается на две полугруппы – одну для оператора U(+t) , другую – для U(–t) .
Введение стрелы времени позволяет сделать шаг вперёд в рассмотрении уже упоминавшихся больших систем Пуанкаре – например, в задаче рассеяния. Возникающие в теории возмущений малые знаменатели вида регуляризуются введением малой мнимой добавки: при e ® 0 . Это устраняет расходимость – но такая добавка есть не что иное, как введение хронологического упорядочения на микроскопическом уровне! В результате симметричное во времени уравнение Шрёдингера порождает два класса решений, одно из которых соответствует прямому. а другое – обратному рассеянию. Решение уравнений обладает меньшей симметрией, чем уравнения движения.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12