Физическое описание явления фильтрации жидкости
Поясним это несколько подробнее. Предположим, что давление жидкости, насыщающей пласт, изменилось по сравнению с исходным моментом на величину dр. Обозначим величину изменения давления жидкости в том месте, где оно максимально, через dр макс. Для поддержания вышележащих горных пород необходимо, чтобы напряжение в скелете пористой среды внутри пласта изменилось также на величину порядка dр. Соответствующая относительная деформация в пласте составило величину порядка dр/Е, где Е- некоторый эффективный модуль Юнга системы, а полное вертикальное смещение точки, например кровли пласта, - величину порядка v = hdр/Е, где h- мощность пласта. Заметим теперь, что, закрепив точки свободной поверхности, т. е. обеспечив на свободной поверхности равенство нулю упругих смещений, а также заменив во всех точках пласта dр на dрмакс, мы можем лишь увеличить возникающее дополнительные напряжения. Таким образом, если на свободной поверхности вышележащего массива смещение равно нулю, а на глубине Н оно имеет величину порядка vмакс=h dрмакс /Е, то, очевидно, соответствующее напряжение sмакс имеет величину порядка sмакс =vмакс Е/H. отношение этого дополнительного напряжения к действующему на глубине Н вертикальному напряжению сжатия, имеющему порядок r0gH(r0 - cредняя плотность горных пород - величина, примерно равная 2,5 г/см3), равно по порядку величины
(21)
Значение dрмакс/r0gH обычно не превышает одной-двух десятых; величина h/Н исчезающе мала, так что изменение напряжения во всем вышележащем массиве и, в частности, на его границах мало сравнительно с исходным напряжением. Поэтому можно считать, что при изменении давления жидкости в пласте напряжения, действующие на кровле и подошве пласта, остаются постоянным.
Предыдущее рассуждение существенно основано на том, что модуль Юнга системы жидкость - пористая среда Е и модуль вышележащего массива горных пород Е1 имеют одинаковый порядок величины (что обычно имеет место в действительности). Если бы эти модули Юнга сильно отличались между собой, то выражение (21) содержало бы дополнительный множитель Е1/Е и при Е1>> Е отношение напряжений могло бы и не быть малым. Физически это означает, что в случае, когда вышележащая толща сложена из очень жестких пород, могут образоваться своды, и при изменении давления жидкости напряжения на кровле и подошве пласта будут меняться.
Есть теперь пренебречь влиянием таких границ области фильтрации, как стенки скважин (эти границы имеют сравнительно очень малую протяжность; их влияние будет оценено ниже), то из независимости от времени уравнений равновесия системы жидкость - пористая среда (20) и напряжений на кровле и подошве пласта следует важный вывод о независимости суммарного напряженного состояния в системе жидкость - пористая среда от времени, так что
|
|
Свертывая уравнения (22) (т. е. полагая i, j=1, 2, 3 и суммируя получающие уравнения), имеем
|
(23)
|
===
2. Основные задачи нестационарной фильтрации
2.1. Уравнение неразрывности
|
(24)
|
|
(25)
Приравнивая выражения (24) и (25) и используя формулу преобразования поверхностного интеграла в объёмный
|
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15