Рефераты по Физике

Физическое описание явления фильтрации жидкости

Страница 13

(82)

Подставляя выражение (81) в условие на бесконечности (72) и граничное условие (73), имеем граничные условия для функции f(x):

f(0) = 1; f(¥) = 0. (83)

В силу непрерывности напора жидкости и потока жидкости функция f(x) по-прежнему должна быть непрерывной и иметь непрерывную производную от квадрата df2/dx. Мы получили, таким образом, для определения функции f(x) граничную задачу того же типа, что и граничные задачи для автомодельных решений, рассмотренных в предыдущем параграфе, и соответствующую значению параметра a, равному бесконечности, т. е. l = 1. Функция f(x) = f(x, 1) тождественно равна нулю при x ³ x0 = 1,810; передний фронт х0 (t) перемещается, таким образом, по закону

(84)

а скорость его перемещения равна

(85)

Полученное решение является в некотором смысле предельным для автомодельных решений, рассмотренных выше. В самом деле, положим в формуле (66)

s = h0 (at )-a, (86)

где h0 - константа размерности напора; t - константа размерности времени, причем, очевидно, эти константы выбираются с точностью до некоторого постоянного множителя. Решение (66) принимает вид

(87)

Будем неограниченно увеличивать в этом решении a при начальном моменте t0 ® - ¥ по закону

t0 = - at. (88)

Раскрывая неопределенность, получаем, что при a ® ¥

(89)

Уравнение (67) в пределе при a ® ¥ переходит в уравнение (82), а условия (68) и (69) совпадают с условиями (83); f(x, l) ® f(x, 1) = f(x).

Обозначая t через 1/c, получаем, что при a ® ¥ решение (87) стремится к решению (81). Поэтому решение (81) было названо предельным автомодельным решением. Это решение было получено в работе Г. И. Баренблатта. предельные автомодельные решения представляют и принципиальный интерес в том отношении, что для доказательства автомодельности этих решений уже недостаточно соображений анализа размерности, т. е. недостаточно инвариантности постановки задачи относительно группы преобразования подобия величин с независимыми размерностями, как это было в ранее рассмотренных автомодельных задачах, а требуется дополнительно воспользоваться инвариантностью постановки задачи относительно еще одной группы - группы преобразований переноса по времени.

Приведенные при рассмотрении предельной автомодельной задачи рассуждения носят общий характер и могут применяться во многих других задачах. Очевидно, что предельные автомодельные движения существуют всегда, если система основных уравнений рассматриваемой задачи имеет автомодельные решения обычного степенного типа с произвольным показателем степени (который может принимать сколь угодно большие значения) и инвариантна относительно преобразования переноса соответствующей координаты. Как пример можно указать задачу пограничного слоя в несжимаемой жидкости, а также задачу одномерных неустановившихся движений газа. Полученные для этих задач автомодельные решения, содержащие степенные функции независимых переменных, при предельном переходе, аналогичном проделанному в рассматриваемой задаче теории фильтрации, дают предельные автомодельные решения, полученные Гольдштейном и Станюковичем путем формальной постановки.

Задача. На границе х=0 полубесконечного пласта с непроницаемым горизонтальным водоупором задается поток (расход) жидкости как степенная функция времени

(90)

Начальный напор во всем пласте равен нулю.

Решение задачи представляется в виде:

(91)

где м (l) =-df2(0, l)/dx , а координата переднего фронта жидкости х0 (t) - в виде:

2. Осесимметричные автомодельные движения. При осесимметричных пологих безнапорных движениях жидкости напор жидкости h удовлетворяет уравнению

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15