Фонон
Т. к. N — число примитивных ячеек кристалла в единице объема, то N = 1/v0, где v0 — объем примитивной ячейки.
Теплоемкость решетки при высоких температурах постоянна (закон Дюлонга и Пти):
CV = 3lNkB |
(46) |
При невысоких температурах все сложнее. Чтобы точно вычислить энергию решетки, т. е. сосчитать сумму (44), необходимо знать дисперсионные зависимости для всех ветвей колебаний. И даже при условии, что зависимости эти известны, аналитическое выражение для энергии получить практически невозможно.
Поэтому для нахождения энергии и теплоемкости решетки применяют различные приближения.
Модель Эйнштейна
В модели Эйнштейна предполагается, что частоты всех фононов одинаковы, ωjk = ω1. Тогда для энергии получаем:
|
(47) |
При высоких температурах, kBT>>ħω1, эта зависимость приводит к выражению (45) для энергии и закону Дюлонга и Пти (46) для теплоемкости.
При низких температурах, kBT<<ħω1, энергия колебаний и теплоемкость экспоненциально уменьшаются:
|
(48) |
|
(49) |
Модель Эйнштейна хорошо описывает вклад в энергию и теплоемкость оптических ветвей фононов, у которых частота слабо зависит от волнового вектора и ее можно считать постоянной. Чтобы учесть только оптические ветви, частоту которых мы полагаем равной ω1, нужно вместо 3l писать число этих ветвей. В общем случае, частоты разных оптических ветвей могут сильно отличаться друг от друга и их вклад в энергию и теплоемкость нужно учитывать отдельно.
Модель Дебая
Опыт показывает, что теплоемкость действительно падает с уменьшением температуры, но не экспоненциально, а пропорционально T3. Дело в том, что при любых, сколь угодно низких температурах в кристалле найдутся колебания, энергия фонона которых меньше kBT. Это — длинноволновые акустические колебания. Именно такие колебания, точнее те из них, частота которых меньше kBT/ħ, вносят основной вклад в энергию при низких температурах. Колебания с б\'ольшими частотами (оптические и более коротковолновые акустические) ''заморожены'': фононов этих колебаний экспоненциально мало.
Сделаем простую оценку. Вклад в энергию вносят фононы, энергия которых меньше kT. Пусть скорость звука j-й акустической ветви равна sj и не зависит от направления волнового вектора: ω = sj|k|. Тогда вклад в энергию дают колебания с волновыми векторами, меньшими kmax = kBT/(ħ sj). Плотность разрешенных значений волновых векторов в k-пространстве кристалла равна V/(2π)3, поэтому внутри сферы радиуса kmax содержится
|
разрешенных значений волновых векторов. Это число колебаний одной акустической ветви, вносящих существенный вклад в энергию. На каждое такое колебание приходится энергия порядка kBT. Для энергии колебаний одной акустической ветви получаем:
|
(50) |
Т. к. мы вычисляем энергию и теплоемкость единицы объема кристалла, то в (50) мы положили V = 1.
Таким образом, вклад одной акустической ветви в теплоемкость пропорционален T3:
|
(51) |
Чтобы получить полную энергию и теплоемкость, надо сложить вклады от трех акустических ветвей:
|
(52) |
где через sj обозначена скорости звука j-й акустической ветви.
Мы сделали достаточно грубую оценку, поэтому к численным коэффициентам в последних двух выражениях не стоит относиться серьезно. Тем не менее, эта оценка дает правильную зависимость энергии и теплоемкости от температуры и скорости звука.
Посчитаем теперь энергию решетки при низких температурах более аккуратно.
Формула (44) имеет вид суммы по различным колебаниям (различным состояниям фононов) определенной величины, которая зависит только от энергии фонона:
|
(53) |
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13