Рефераты по Физике

Фонон

Страница 12

Мандельштам и Ландсберг в своих первых экспериментах по комбинационному рассеянию предполагали обнаружить рассеяние на акустических, а не на оптических колебаниях решетки. Изменение частоты при таком рассеянии намного меньше, чем при рассеянии на оптических фононах (рис. 12) и может быть обнаружено лишь при очень хорошем спектральном разрешении измерительных приборов. Прилавки торговые для магазинов торговые прилавки для магазинов.

Рассеяние на акустических фононах действительно наблюдается и носит название рассеяния Мандельштама-Бриллюэна.

Закон дисперсии акустических колебаний при малых волновых векторах линеен: ωак = sk, где s — скорость звука. Поэтому изменение частоты света при рассеянии на угол θ равно:

\omega=sk=s\cdot 2\varkappa_0\sin\theta/2=2\Omega_0\frac{s}{c}\sin\theta/2

(72)

Видно, что относительное изменение частоты очень мало. Скорость света в кристалле по порядку величина равна 108м/с, скорость звука — 103м/с, поэтому s/c~ 10–5. Отметим также, что при рассеянии на акустических фононах изменение частоты света зависит от угла рассеяния, см. рис. 12. (При рассеянии на оптических колебаниях сдвиг частоты равен ω0 независимо от направления рассеяния).

На спектре комбинационного рассеяния (рис. 8) высота стоксового пика больше чем антистоксового. Этому явлению легко дать качественное объяснение: для того, чтобы поглотить фонон, нужно, чтобы он в кристалле был, а испустить фонон можно, казалось бы, и ''на пустом месте'', без помощи других фононов. Поэтому при низких температурах, когда фононов мало, интенсивность антистоксовой линии намного меньше, чем стоксовой.

Однако, не все так просто: как показал Эйнштейн, имеющиеся в кристалле фононы ''помогают'' излучению фононов (вынужденное излучение). Вынужденное излучение будет более подробно рассмотрено ниже в применении к свету, а пока лишь скажем, что вероятность рассеяния с поглощением фонона пропорциональна числу фононов данного типа N, а вероятность обратного процесса — рассеяния с испусканием фонона — пропорциональна N+1. Единица в последнем выражении как раз и соответствует испусканию фонона ''на пустом месте'' (спонтанному излучению).

Если пренебречь малым изменением частоты при рассеянии, то коэффициенты пропорциональности в этих вероятностях можно считать одинаковыми. В состоянии термодинамического равновесия число фононов данного типа с частотой ω описывается распределением Бозе-Эйнштейна:

N=\frac{1}{\exp\left(\frac{\hbar\omega}{kT}\right)-1}

(73)

Отсюда для отношения интенсивностей стоксовой и антистоксовой линий получаем:

\frac{W_{\rm{антистокс}}}{W_{\rm{стокс}}} \approx \frac{N}{N+1}=\exp\left(-\frac{\hbar\omega}{kT}\right)

(74)

Это отношение позволяет по данным рассеяния измерить температуру кристалла. Интенсивности стоксовой и антистоксовой линий сильно различаются при низких температурах, когда kT<ħω. При kT>>ħω, в классическом пределе, интенсивности обеих линий равны.

Итак, мы рассмотрели комбинационное рассеяние света на оптических и акустических колебаниях решетки. Один из выводов этого рассмотрения состоит в том, что в рассеянии участвуют лишь длинноволновые фононы. Поэтому с помощью комбинационного рассеяния света видимого диапазона можно получить информацию только о длинноволновой части фононного спектра: определить частоты \omega_0=\omega(\vec{k}=0)для оптических фононов и скорость звука s для акустических.

Как с помощью комбинационного рассеяния исследовать весь фононный спектр, в частности, область больших волновых векторов? Для этого нужно изучать рассеяние частиц (или квазичастиц), длина волны которых сравнима с постоянной решетки: в рассеянии таких частиц могут участвовать коротковолновые фононы.

Электромагнитное излучение с такими длинами волн принадлежит рентгеновскому диапазону, мы уже рассматривали упругое рассеяние рентгеновских волн на неподвижной идеальной кристаллической решетке. Энергия кванта такого излучения по порядку величины равна 10000 эВ. Напомним, что энергия оптического фонона составляет 0.03-0.1 эВ: заметить такое изменение на фоне 10000 эВ очень трудно.

Поэтому для изучения коротковолнового фононного спектра в качестве рассеивающихся частиц используют нейтроны. Нейтрон нейтрален, он слабо взаимодействует с электронной системой кристалла. Но главное, энергия нейтрона, обладающего длиной волны порядка постоянной решетки, сравнима с энергией фонона:

{\cal E}_n = \frac{\hbar^2k^2}{2M}=\frac{\hbar^2\cdot 4\pi^2}{2M\lambda^2}\sim \frac{10^{-54}\cdot 40}{2\cdot 10^{-24}\cdot 10^{-16}}\sim 0.1 \rm{эВ}

(75)

Энергии нейтронов, испускаемых при ядерных реакциях, на много порядков больше, поэтому, чтобы использовать нейтроны для исследования фононного спектра, приходится их замедлять.

Зная энергию падающего нейтрона и нейтрона, рассеянного в определенном направлении, мы можем определить энергию и импульс фонона, воспользовавшись законами сохранения энергии и импульса:

\vec{\varkappa}=\vec{\varkappa}_0 + \vec{k}

(76)

Перейти на страницу:  1  2  3  4  5  6  7  8  9  10  11  12  13