Концепция современного естествознания
Третий закон Ньютона. Силы, с которыми взаимодействуют тела равны по величине, противоположны по направления и направлены вдоль линии взаимодействия. Этот закон утверждает, что силовое воздействие на тело носит характер взаимодействия. Этот же закон утверждает, что взаимодействия всех тел являются центральными.
Закон всемирного тяготения, открытый Ньютоном, иногда называют четвертым законом Ньютона. Его открытие базируется на трудах выдающихся астрономов 16-17-х веков Н.Коперника и И.Кеплера. И.Кеплер на основании учении Коперника о гелиоцентрической системе мира сформулировал три закона движения планет. Эти законы были правильными, но, как показал впоследствии И.Ньютон, являлись частным случаем более общего закона всемирного тяготения. Законы Кеплера позволяли найти орбиты планет, периоды их обращения вокруг солнца и скорость движения планет по орбитам.
С позиций современной механики отметим, что второй закон Кеплера является следствием закона сохранения момента импульса, он справедлив для движения тела в поле любых центральных сил.
С использование введенного нами математического аппарата закон всемирного тяготения можно написать в виде:
, где G - гравитационная постоянная, m1 и m2 массы тел, единичный вектор, направленный вдоль линии взаимодействия, определяющий направление гравитационной силы .
Тело, двигающееся прямолинейно и равномерно относительно системы отсчета К, вследствие уравнений (10.4) движется также прямолинейно и равномерно относительно системы отсчета К’. Это обозначает, что формулировка первого закона Ньютона во всех инерциальных системах отсчета одинакова (правильнее сказать, первый закон Ньютона справедлив во всех инерциальных системах отсчета). Отметим, что, уравнения (10.4) позволяют по одной известной инерциальной системе отсчета построить бесконечное множество других.
В системе координат К форма записи второго закона Ньютона определяется уравнениями (10.6). Поскольку, ускорение и масса инвариантны относительно преобразований Галилея, уравнение (10.6) одинаково записывается в различных инерциальных системах отсчета.
Поскольку, величина силы не меняется при переходе от одной инерциальной системы отсчета к другой, третий закон Ньютона тоже инвариантен относительно преобразований Галилея.
Четвертый закон не нуждается в доказательстве инвариантности относительно преобразований Галилея, поскольку расстояния, массы и силы не меняются при переходе из одной инерциальной системы отсчета в другую.
Таким образом, все законы Ньютона инвариантны относительно преобразований Галилея. Это значит, что они справедливы и записываются одинаковым образом во всех инерциальных системах отсчета.
10.4. Детерминизм классической механики.
Под детерминизмом понимается философское учение об объективной закономерности, взаимосвязи и причинной обусловленности всех явлений материального и духовного мира. Центральным ядром детерминизма является положение о причинности. Идея детерминизма состоит в том, что все явления и события в мире не произвольны, а подчиняются объективным закономерностям, независимо от наших знаний о природе явлений. Всякое следствие имеет свою причину.
Как и все остальное в физике, понятие детерминизма менялось по мере развития физики и всего естествознания. В 19-м веке теория Ньютона окончательно оформилась и установилась. Существенный вклад в ее становление внес П.С.Лаплас (1749 - 1827). Он был автором классических трудов по небесной механике и теории вероятности. Он же разработал принцип механического детерминизма, который сегодня носит его имя: детерминизм Лапласа.
Согласно классическому механистическому детерминизму существует строго однозначная связь между физическими величинами, характеризующими состояние системы в какой-то момент времени (координаты и импульсы) и значениями этих величин в любой последующий или предыдущий моменты времени.
Если говорить более простым языком, детерминизм по Лапласу означает, что мы всегда однозначно можем описать поведение тела или любой сколь угодно сложной системы, если знаем начальные координаты и скорости тела, а также знаем законы движения и взаимодействия тел.
Этот принцип совершенно справедлив, если не выходить за рамки классической механики. Действительно, решение основной обратной задачи динамики всегда позволяет по известным силам SF(x,y,z,t), приложенным к телу найти закон его движения r(x,y,z,t) и изменения скоростиu(x,y,z,t). Полученные решения всегда будут однозначными и точными. Сказанное обозначает, что движение тела можно рассчитать сколь угодно далеко вперед. Тоже самое относится и к системе тел. Рассмотренная задача позволила сделать Лапласу сформулировать принцип механического детерминизма. Если известны начальные координаты и скорости тел системы, а также законы взаимодействия тел, то можно определить состояние системы в любой последующий момент времени. Примерами практического воплощения этого принципа еще во времена Лапласа были астрономические таблицы, очень точно описывавшие движения небесных тел на многие годы вперед.
Отметим, что для успешного практического решения подобных задач законы взаимодействия тел нужно знать очень точно, либо нужно смириться с тем, что расчет будет адекватно описывать поведение системы лишь в ограниченном временном интервале. Связано это с тем, что неточности расчета имеют свойство накапливаться и искажать получающуюся картину, - чем дальше, тем больше. Кроме того нужно иметь ввиду, что для решения задачи о движении большого количества взаимодействующих тел нужно задать очень большое количество начальных данных, законов взаимодействия и решать очень громоздкую систему дифференциальных уравнений. Не следует думать, что дело смогут спасти ЭВМ новых поколений; трудности, которые возникнут при решении такой задачи, носят принципиальный характер. За все время существования вселенной невозможно даже задать положения всех молекул воздуха, находящихся в 1-м см3, не говоря уже о том, что решать эту систему уравнений нужно быстрее, чем в режиме реального времени.
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21