Учебник по физике для поступающих в ВУЗ
Усилитель на транзисторе
Одной из наиболее распространенных схем усиления слабых электрических сигналов на транзисторе, является схема с общим эмиттером.
Эмиттер включен как в цепь базы, так и в цепь коллектора.
Небольшое изменение входного напряжения цепи база-эмиттер DUвх = DUБЭ вызывает значительное изменение выходного напряжения, или напряжения на сопротивлении нагрузки DUвых = DUн
Коэффициент усиления – отношение изменения выходного напряжения к вызвавшему его изменению входного:
k =
Коэффициент усиления подобных схем может быть порядка 1000.
Генератор на транзисторе
Электрические колебания высокой частоты получают с помощью генераторов на транзисторах.
Основным элементом такого генератора является колебательный контур и источник постоянного тока, включенные в цепь эмиттер-коллектор, катушка индуктивности Lсв в цепи база-эмиттер, индуктивно связанная с катушкой индуктивности L колебательного контура .
Собственные электромагнитные колебания в контуре являются затухающими. Если потери энергии в контуре компенсировать поступлением энергии от источника внутри системы, то возможна генерация незатухающих колебаний, или автоколебаний.
В показанной схеме генератора на транзисторе поступление энергии в контур (подзарядка конденсатора) происходит, когда между базой и эмиттером приложено напряжение в прямом направлении – плюс – к базе, минус – к эмиттеру, транзистор открыт и через него протекает ток.
Такая полярность напряжения UБЭ обеспечивается согласованной индуктивной связью катушек L контура и Lсв в цепи база-эмиттер. Подобная связь называется обратной связью (в данном случае – это положительная обратная связь) (См.выше Автоколебания)
Через полупериод колебаний, когда конденсатор перезарядится, произойдет изменение напряжения база-эмиттер на противоположное и транзистор закроется.
Транзистор подобен ключу, присоединяющему источник питания к колебательному контуру в нужный момент времени для подзарядки конденсатора. Момент открытия ключа определяется индуктивной связью катушек L и Lсв
МАГНИТНОЕ ПОЛЕ. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
ОСНОВНЫЕ ПОЛОЖЕНИЯ
Электрический ток оказывает магнитное действие. Таким образом, магнитное поле порождается движущимися зарядами.
Вектор магнитной индукции – векторная физическая величина, направление которой в данной точке совпадает с направлением, указываемым в этой точке северным полюсом свободной магнитной стрелки.
Модуль вектора магнитной индукции – физическая величина, равная отношению максимальной силы, действующей со стороны магнитного опля на проводник с током, к произведению силы тока и длины отрезка проводника:
B =
Единица магнитной индукции – Тл (Тесла)
Правило буравчика для прямого тока:
если ввинчивать буравчик по направлению тока в проводнике, то направление скорости движения конца его рукоятки совпадает с направлением вектора магнитной индукции в этой точке.
Правило правой руки для прямого тока:
если охватить проводник правой рукой, направив отогнутый большой палец вдоль тока, то кончики остальных пальцев в данной точке покажут направление вектора индукции в этой точке.
Принцип суперпозиции магнитных полей:
результирующая магнитная индукция в данной точке складывается из векторов магнитной индукции, созданной различными токами в этой точке.
Правило буравчика для витка с током (контурного тока):
если вращать буравчик по направлению тока в витке, то поступательное перемещение буравчика совпадает с направлением вектора магнитной индукции, созданной током в витке на своей оси.
Линии магнитной индукции – линии, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции.
Линии магнитной индукции всегда замкнуты: они не имеют ни начала, ни конца.
Магнитное поле – вихревое поле, т.е. поле с замкнутыми линиями магнитной индукции.
Магнитный поток (поток магнитной индукции) через поверхность определенной площади – физическая величина, равная скалярному произведению вектора магнитной индукции на вектор площади:
Ф = () = В ∆S cos(a)
(Скалярное произведение двух векторов равно произведению их модулей на косинус угла между ними)
Единица магнитного потока – Вб(Вебер) = Тл*м2 = В*с
Закон Ампера:
сила, с которой магнитное поле действует на помещенный в него отрезок проводника с током, равна произведению силы тока, магнитной индукции, длины отрезка проводника и синуса угла между направлениями тока и вектором магнитной индукции:
FA = B |I| l sin(a)
В однородном магнитном поле замкнутый контур стремиться установиться так, чтобы направление его собственной индукции совпало с направлением внешней индукции.
Сила Лоренца – сила, действующая на движущийся со скоростью v заряженную частицу со стороны магнитного поля индукцией В:
Fл = |q| vB sin(a),
где a – угол между вектором скорости v и вектором магнитной индукции B.
Направление силы Лоренца определяется правилом левой руки:
если кисть левой руки расположить так, чтобы четыре вытянутых пальца указывали направление скорости положительного заряда (или противоположное скорости отрицательного заряда), а вектор магнитной индукции входил в ладонь, то отогнутый на 90о большой палец покажет направление силы, действующей на данный заряд.
Заряженная частица, влетающая в однородное магнитное поле параллельно линиям магнитной индукции, движется вдоль этих линий.
Заряженная частица, влетающая в однородное магнитное поле в плоскости, перпендикулярной линиям магнитной индукции, движется в этой плоскости по окружности.
Параллельно расположенные проводники, по которым протекают токи в одном направлении, притягиваются, а в противоположных – отталкиваются.
Магнитные поля, создаваемые токами, протекающими по бесконечно длинным параллельным проводникам, находящимся на расстоянии r друг от друга, приводят к возникновению на каждом отрезке проводников длиной Dl силы взаимодействия:
Перейти на страницу: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100